Skip to main content
Category

Page IW process EN

Master your microbial issues in the paper industry

As a significant water consumer, the paper industry has adapted by reusing its industrial water. Yet, it still faces significant microbiological challenges leading to various direct and indirect consequences. These include the quality of the final product, microbial safety, environmental concerns, staff well-being…
How can the paper industry address these problems, and what solutions are available?

Microbiological Challenges in the Paper Industry

The paper industry’s water demand is substantial, estimated at 500 liters per kilogram of paper produced [1]. To address environmental concerns related to resource scarcity and better manage their effluents, the industry has adapted by recycling 95% to 98% of water used internally [2]. However, the closed-loop systems have intensified microbiological issues.

Indeed, microorganisms such as bacteria, yeast, and fungi find an ideal environment for rapid growth within the paper production process. Various factors, including abundant nutrients, suspended solids (MES), temperatures ranging from 30 to 60°C, and a neutral pH level (6.5 to 7.5), provide favorable conditions for microbial development.

When microorganisms grow uncontrollably, they form biofilms (slime) that adhere to machinery surfaces. This biofilm accumulation can lead to several detrimental effects:

  • Weakened paper sheets causing breaks: the biofilm deposited on the paper web during the drying process creates holes, reducing paper strength and resulting in costly downtime. 
  • Unwanted discoloration or staining of the paper: different microorganisms present can cause grey, yellow, or orange stains, diminishing the product’s value and even rendering it unsellable.
  • Unpleasant odors: microorganisms produce foul-smelling gases, leading to workplace discomfort, health issues, and neighborhood complaints.
  • Microbiological corrosion: development of corrosive bacteria, like sulfite-reducing bacteria, damages networks, leading to significant maintenance costs.

 

Existing Curative Solutions 

To prevent or address these issues, paper industry operators resort to heavy treatments that have significant environmental implications. The two main curative actions are:

  • Circuit cleaning using biodispersant products, followed by total network drainage.
  • Disinfection with biocidal products, which can be harmful to the environment.

However, these methods come with consequences:

Curative actions Consequences
Cleaning Filamentous bacteria discharge in wastewater treatment plants
An excessive growth of filamentous bacteria leads to bulking phenomena, affecting sludge settling. This degrades the quality of the discharged effluent.
Biodispersants discharge in wastewater treatment plants
In large quantities, these products are difficult to eliminate and/or neutralize. Their release into the natural environment can cause environmental problems.
Disinfection Biocide discharge in wastewater treatment plants
Biocidal substances are challenging to eliminate completely, resulting in their release into the natural environment, causing environmental issues.
Residues in mists enveloping the machine

A health risk (Legionellosis) for employees working in the manufacturing facility.

Significant economic cost in biocide products for the company

 

Mastering Product Treatment Usage is Achievable!

While product treatment remains essential for ensuring high-quality production and safety, controlling the quantity of used products is necessary to limit toxic agent discharge into the environment.

One solution to reduce product usage is to prevent biofilm development proactively. Regularly monitoring the water network allows operators to anticipate microbiological issues, biofilm accumulation, and subsequent product contamination. In this regard, having a total flora indicator is essential. Quantitative ATP-metry provides on-site results in just 2 minutes, indicating the overall microbiological load of water. This enables operators to take action before defects appear in the final product.

ATP tests offer several advantages, including:

  • Identifying process elements that are sources of contamination or microbial growth, facilitating targeted antimicrobial treatments.
  • Evaluating the effectiveness of existing biocidal treatments.
  • Improving treatment efficiency through better selection of active molecules, injection points, and frequencies.
  • Anticipating potential microbiological issues.

ATP tests thus provide numerous benefits:

  • Reduced production defects.
  • Decreased installation downtime.
  • Limited use of environmentally harmful products, promoting eco-responsible management of biocidal and biodispersant products – use only what is necessary!
  • Cost savings on treatment products.

In conclusion, by employing advanced techniques such as ATP-metry, the paper industry can overcome its microbiological challenges more effectively, ensuring high-quality production while maintaining a sustainable approach to environmental and economic factors.

How to reduce non-quality costs in the electroplating industry?

HOW TO REDUCE NON-QUALITY COSTS IN THE ELECTROPLATING INDUSTRY?

Microorganism development in rinsing baths in the electroplating industry can cause visual defects on the treated items. This kind of contamination can lead to substantial non-quality costs and production shutdowns.

To this day, few water system operators implemented monitoring procedures of the microbial development. Preventive measures are done “blind” at a frequency arbitrarily defined and without concrete follow-up. To address this contamination issue, GL BIOCONTROL developed a three-step systematic approach. It has been tested in several watchmaking factories, and companies specialized in surface treatments. Feedback on an innovative process.

Microbial contamination remains poorly known by operators

When a new production unit is installed, the water system is generally properly thought: the water pipes are new and clean with smooth surfaces, and maintenance procedures are well defined. All the ingredients required to ensure a high-quality production.

However, over time, we often observe drifts in the system. Several problems can appear:

  • Modifications of the water system leading to dead legs.
  • Selection of a few bacteria due to repeated treatment. Indeed, common prevention mainly relies on biocides such as isothiazolone, only biocide compatible with the surface treatment processes. Over time, this treatment can lead to the selection of a resistant flora.
  • A cleaning and disinfection strategy not adapted to the water system. A too short contact time and/or a weak biocide concentration lead to ineffective biocide treatments.
  • Appearance of corroded spots or scaled areas in the pipes and baths. This induces microorganism adhesion and biofilm formation.
  • A high turbidity, often due to a closed loop water recycling system, that limits UV efficiency.

All these parameters lead to microbiological development in the water system and in the rinsing baths.

This microbial contamination has a negative impact on the quality of the treated items. Besides, the facility’s manager suffers a dual financial penalty: costs related to production defects (batch recalls…) and costs induced by production shutdowns to clean and disinfect the unit. Without mentioning the negative effect on the brand image…

The need of the electroplating sector is dual: ensuring the good microbiological quality of the treatment baths while limiting the maintenance costs.

A three-step approach

At GL Biocontrol, we developed a systematic approach in order to secure the manufacturing process. This solution, organised in three stages, answers to the industrial needs and optimises the corrective actions.

Identify…

The first step aims to map the water circuits in order to identify in real-time the areas under control and the critical areas. This thorough inspection highlights the circuit’s components producing biomass. To be as responsive as possible, we use a measuring tool that gives you the result directly on the field: quantitative ATPmetry. The delay, inherent to the cultural methods, is thus avoided. The production water system, the treatment baths as well as the surfaces must be analysed.

Mapping detects the critical areas of the circuit. Since then, the operator can implement the correctives actions to improve the microbiological quality of the process.

…Assess…

Next, these corrective actions must be monitored over time and assessed. For example, the various stages a treatment procedure (cleaning and disinfection) are assessed and optimised in real-time. The goal of this second step is to adjust the treatment to the ecosystem encountered to ensure an optimal efficacy. In this way, we durably limit microbial growth and biofilm formation.

…Monitor

Finally, the third and last step aims to monitor over time the evolution of the production unit microbiological quality. Using ATP tests, one can self-monitor its water circuits, the electroplating and rinsing baths. Service technicians can perform themselves the sampling and analysis on a regular basis. Implementing a biomonitoring will allow you to control in real-time the microbiological activity of the circuits. In this way, it is possible to react immediately in case of a significant increase of the microorganism level. The operator starts the earlier corrective actions to limit non-conformity on the treated parts. Besides, using an indicator of biocontamination will allow you to trigger the cleaning and disinfection procedures only when needed.

Personalized support and follow-up

GL Biocontrol offers a complete provision of expertise of the water systems and treatment baths. We also supply you with all the reagents, consumables and measurement device required for monitoring the microbial quality.
Furthermore, the offer comprises a personalized support covered by our experts to ensure that it is properly implemented: handling of the ATP tests, definition of the surveillance limits, determination of the corrective actions, etc…

To sum up…

The DIADEM approach has many advantages for production units in the sector of surface treatments. Optimisation of the microbial quality of the water and baths, as well as the implementation of a self-monitoring by ATPmetry will allow you to:

  • Reduce production costs (avoid production shutdown, limit volumes of treatment products used, reduce the C.I.P procedures)
  • Reduce non-quality costs due to visual defects on the treated items.  

For more information :

CONTACT US