Skip to main content
Category

ATP-métrie

ATP libre vs ATP intracellulaire

Détection des bactéries par

ATP-métrie, 40 ans d’évolution

Qu’est-ce que l’ATP ?

L’adénosine triphosphate (ATP) est une molécule utilisée chez tous les organismes vivants pour fournir de l’énergie aux réactions métaboliques. C’est le carburant des cellules. L’ATP étant spécifique des milieux vivants, on considère donc que toute trace d’ATP est le témoin d’une trace de vie.
L’ATP-métrie est une technique permettant de détecter la présence d’ATP dans un échantillon en quelques minutes seulement.
On trouve l’ATP sous deux formes :

  • l’ATP libre ou extracellulaire,
  • l’ATP intracellulaire.
Molécule ATP
ATP libre et ATP intracellulaire
L’ATP libre

Il s’agit de l’ATP libérée par les cellules mortes ou en phase de lyse. Lorsqu’une cellule meurt, elle perd son intégrité membranaire. L’ATP, molécule de très petite taille, est immédiatement relarguée dans le milieu.

N’étant pas très stable sous forme libre, elle est généralement dégradée en quelques heures. Sa stabilité est fonction de nombreux paramètres :

  • Le pH : l’ATP libre est stable à pH neutre mais sa vitesse de dégradation augmente rapidement à des pH acide ou basique.
  • La température : la vitesse de dégradation augmente avec la température. Plutôt stable à 4°C, elle se dégrade plus rapidement à 25-30°C.
  • La présence d’agents stabilisant : tels que les polycations et/ou certains cations.
  • Le type de biocide utilisé : les agents oxydants tels que le chlore ou le brome dégradent rapidement l’ATP libre alors que les agents non oxydants ont peu d’effet.
  • La présence d’autres microorganismes : certains sont capables de récupérer l’ATP libre pour l’utiliser.

La stabilité de l’ATP libre dans un milieu est donc difficile à prévoir car elle dépend d’une combinaison de ces différents facteurs. En effet, si le milieu permet une bonne stabilité de la molécule d’ATP libre il y aura un phénomène d’accumulation. En revanche, si l’environnement est défavorable, l’ATP libre disparaîtra très rapidement.

L’ATP intracellulaire

Il s’agit de l’ATP présent dans les cellules vivantes. Comme évoqué précédemment, cette molécule joue le rôle d’intermédiaire énergétique indispensable à la cellule. C’est une molécule recyclée en permanence dans la cellule, mais sa production s’arrête immédiatement à la mort de la cellule.

L’ATP totale correspond à l’addition de l’ATP intracellulaire et de l’ATP libre. Pour le mesurer, on utilise des agents de lyse qui vont détruire les cellules et extraire l’ATP. La mesure se fait alors sur l’ATP intracellulaire libéré et l’ATP libre.

Pour évaluer la quantité de microorganismes présents dans un échantillon, il nous faut donc mesurer seulement l’ATP intracellulaire.

“ATP totale – ATP libre = ATP intracellulaire”

Une approche risquée…

Comment mesurer l’ATP intracellulaire ?

Afin de la quantifier, deux techniques ont été développées : une mesure indirecte et une mesure directe.

La mesure indirecte :

La première technique ayant été développée est la mesure indirecte de l’ATP intracellulaire. On se base sur le postulat :

ATP totale – ATP libre = ATP intracellulaire

On mesure donc l’ATP totale et l’ATP libre pour en déduire l’ATP intracellulaire.

  • Mesure de l’ATP libre : elle est mesurée par bioluminescence en absence d’agent lytique. Ainsi, seule l’ATP extracellulaire est disponible pour la réaction de bioluminescence. Cependant, comme on l’a décrit précédemment, la quantité d’ATP libre dans un milieu peut être très variable et dépend de nombreux facteurs. Elle n’est pas représentative de la quantité de micro-organismes dans l’échantillon. Il y a, de ce fait, une forte incertitude de mesure sur l’ATP libre.
  • Mesure de l’ATP totale : elle est mesurée par bioluminescence en présence d’agents lytiques qui détruisent les cellules. L’ATP intracellulaire est libérée et se cumule alors à l’ATP libre pour la réaction de bioluminescence. Les volumes d’échantillon étant généralement faibles (environ 100 µl), la présence de fragments de biofilm peut fortement modifier le résultat.

Ainsi, avec cette stratégie, la mesure de l’ATP intracellulaire repose sur la soustraction de deux mesures incertaines, ce qui rend le résultat approximatif, voire erroné.

L’autre problème réside dans le caractère relatif de la mesure d’ATP libre ou totale. En effet, le résultat rendu par le luminomètre est en Unité Relative de Lumière (RLU). Or, dans cette approche indirecte, il n’y a pas de standardisation de la mesure. Elle est donc dépendante de nombreux facteurs agissant sur l’efficacité de l’enzyme (température, âge de l’enzyme, effet des agents de lyse, des biocides…).

Le fait de travailler sur des mesures seulement qualitatives entraîne de grandes approximations. Il arrive même d’obtenir une quantité d’ATP libre supérieure à l’ATP totale pour certains échantillons !

En conclusion, la mesure de l’ATP intracellulaire par cette approche est une méthode simple et rapide. Cependant, de par les problématiques évoquées ci-dessus, entrainant de fortes variabilités, le résultat peut s’avérer très difficile à interpréter. Il doit donc être pris avec précaution pour éviter les surinterprétations.

Mesure de l’ATP intracellulaire directe

Pour mesurer directement l’ATP intracellulaire, il faut ajouter une étape de filtration sur membrane qui permet d’éliminer l’ATP libre. En effet, cette molécule étant très petite, elle n’est pas retenue sur le filtre alors que les microorganismes intacts le sont.

La stratégie consiste ensuite à lyser les microorganismes retenus sur le filtre afin de libérer l’ATP intracellulaire. On a alors une vision représentative des organismes vivants présents dans l’échantillon.

Par ailleurs, cette stratégie a aussi l’avantage de travailler sur un volume représentatif d’eau, entre 10 et 50 ml en général.

Bien que nécessitant un peu plus de manipulation, cette approche, couplée à une standardisation, permet d’avoir une analyse quantitative bien plus robuste et facilement comparable dans l’espace et dans le temps.

Conclusion

L’ATP-métrie est une des méthodes les plus rapides et simples pour détecter la présence de microorganismes dans un échantillon d’eau. Cette analyse, vieille de 40 ans, a bien évidemment évolué au cours du temps.

Evolution ATP-métrie

Au départ, seule l’ATP totale était détectée de manière qualitative. Puis, grâce à la mesure de l’ATP libre, il a été possible d’évaluer l’origine intracellulaire ou non de cette ATP et donc de détecter les « microorganismes vivants ». Cependant, dû aux fortes variabilités, l’interprétation des résultats restait souvent compliquée. Puis, il y a 15 ans, les approches par filtration ont permis de réellement s’affranchir des problèmes liés à l’ATP libre pour n’analyser que l’ATP intracellulaire. Enfin, l’arrivée de la standardisation externe puis interne a permis de rendre cette mesure quantitative, et donc robuste et comparable dans le temps et ou dans l’espace donnant toute sa pertinence à l’ATP-métrie.

L’ATP-métrie : un indicateur prédictif des non-conformités bactériologiques des eaux

Les milieux HPC (Heterotrophic Plate Count) tels que le YEA, PCA ou R2A, couramment utilisés pour dénombrer les bactéries environnementales (ex : germes revivifiables à 22°C ou à 36°C), détectent moins de 1% de la flore totale (OMS, 2003). En effet, une large proportion des bactéries ne peut se multiplier sur ces milieux. C’est par exemple le cas des :

  • Bactéries anaérobies (stricts ou tolérants) : la présence d’oxygène ralentit ou inhibe leur croissance.
  • Bactéries nécessitant une température spécifique pour cultiver tels les psychrophiles (faible température) ou les thermophiles (hautes températures).
  • Germes nécessitant un environnement spécifique tel que les acidophiles (milieu très acide) ou les halophiles (haute salinité).
  • Germes ayant besoin d’éléments spécifiques comme des acides aminés rares, sucres complexes, vitamines, cations…
  • Bactéries incultivables dont la culture est impossible avec les techniques traditionnelles.

Représentation de la flore bactérienne totale

  • Bactéries VBNC (viables mais non cultivables) qui ont perdu leur cultivabilité de façon transitoire suite à un stress. L’utilisation de biocide, les traitements physiques (ex : UV) ou la modification des paramètres environnementaux (température, pH…) peuvent être à l’origine de cet état.

De plus, pour être détectée par l’œil du technicien, la bactérie doit être capable de former une colonie. C’est-à-dire passer d’une à plusieurs millions dans le temps de culture imparti. Cela implique une phase de latence courte et une vitesse de multiplication suffisamment rapide, paramètres dépendants notamment de la température d’incubation et du milieu utilisé.

En fin de compte, sur les milieux classiquement utilisés pour le contrôle des eaux, on ne détecte que la flore mésophile aérobie capable de cultiver entre 20°C et 45°C, dans le temps donné, et pour qui les éléments nutritifs du milieu sont adaptés.
Parler de « flore totale » par culture est une aberration !

Chaque milieu de culture en fonction des conditions choisies, ne va détecter qu’une fraction des bactéries.
Il faut donc parler de flore cultivable en indiquant le milieu de culture, la température et le temps d’incubation choisis.

Exemple de développement bactérien suivi par culture et par ATP-métrie

L’ATP-métrie, quant à elle, détecte l’ensemble de la flore bactérienne vivante en s’affranchissant du caractère cultivable. L’ATP-métrie permet ainsi de détecter les bactéries cultivables et non-cultivables. Pour ces différentes raisons, il est fréquent d’observer une augmentation de la flore totale par ATP-métrie bien avant l’apparition des colonies sur un milieu de culture.

L’ATP-métrie est un indicateur précoce d’une contamination microbiologique.

Comment évaluer l’efficacité d’un traitement UV par ATP-métrie ?

Le traitement UV

Principe de fonctionnement

La désinfection par UV est aujourd’hui régulièrement utilisée pour le traitement de l’eau potable. Les UV agissent sur les acides nucléiques (ADN/ARN) de la plupart des cellules (bactéries, virus, protozoaires…). Ils endommagent le matériel génétique des microorganismes les empêchant alors de se reproduire et/ou d’assurer une partie de leur fonction métabolique. On parle d’inactivation du microorganisme.

Suivant le type de microorganisme et de son état physiologique, l’inactivation aura un effet bactéricide entraînant la mort de la cellule, ou un effet bactériostatique qui entraîne un arrêt de la croissance de manière transitoire le temps que ce dernier répare son matériel génétique. Si l’UV est suffisamment puissant, il peut altérer l’intégrité membranaire entraînant la lyse immédiate de la cellule. 

Doses UV ou fluence

Cependant, les doses nécessaires varient d’un microorganisme à un autre. La dose UV ou “fluence” est le paramètre essentiel pour dimensionner une installation UV. Elle correspond au résultat de l’intensité d’émission de la lampe multipliée par le temps de contact, celui-ci étant directement dépendant du débit pour une installation hydraulique.

Le graphique ci-dessous représente l’efficacité de différentes puissances de réacteurs en fonction du débit de passage de l’eau. Les mesures sont effectuées 2h après le traitement grâce au kit d’ATP-métrie DENDRIDIAG® SW. Le graphique montre bien l’effet du débit sur la qualité du traitement UV. 

D’après la bibliographie, pour avoir une bonne efficacité sur l’ensemble des microorganismes, la dose UV doit être a minima de 40 mJ/cm². Généralement, les UV-C sont utilisés pour le traitement à une longueur d’onde de 254 nm.

Par ailleurs, plusieurs paramètres jouent sur l’efficacité du traitement UV :

  • la transmittance de l’eau,
  • la turbidité,
  • la teneur en matière organique,
  • la couleur,
  • l’encrassement des lampes (teneur en fer et en manganèse de l’eau, entartrage,… ),
  • l’épaisseur de la lame d’eau,
  • le vieillissement des lampes…

Contrairement à un traitement biocide tel que le chlore, l’UV n’a pas d’effet de rémanence. Si le matériel génétique est peu endommagé, les microorganismes ont la capacité de le réparer et peuvent alors se multiplier à nouveau. Il faut donc éviter de stocker une eau désinfectée aux UV au risque de voir l’apparition d’un développement bactérien important. Le traitement UV montre toute sa pertinence lorsqu’il est utilisé :

  • au point d’usage,
  • en complément d’autres traitements (potentialisation),
  • sur une eau très peu contaminée.

La mesure de l’efficacité du traitement UV par ATP-métrie

L’ATP-métrie quantitative mesure la quantité d’ATP présente dans les microorganismes. Il s’agit d’une mesure de la flore totale. 

Après une désinfection UV, on peut observer 3 scénarios par la mesure ATP :

  • Abattement immédiat : le réacteur UV détruit immédiatement les cellules qui libèrent leur ATP dans le milieu. L’étape de filtration sur membrane élimine alors l’ATP libre. 
  • Abattement observé 2h après le traitement : l’UV a efficacement endommagé les cellules mais n’a pas altéré leur intégrité membranaire. De ce fait, l’étape de filtration ne permet pas de les éliminer. Il est alors nécessaire d’attendre 2h que les cellules soient détruites pour observer l’effet bactéricide du traitement. 
  • Pas d’abattement observé 2h après traitement : l’UV n’a pas ou peu d’effet bactéricide. Il est alors important d’évaluer l’effet bactériostatique du réacteur. En effet, il y a un risque important de recroissance des bactéries. Si l’effet bactériostatique est démontrée, il est possible d’utiliser l’eau produite rapidement, sans étape de stockage.
Comment vérifier l’effet bactériostatique des UV ?

Suite à un traitement UV, prélever un litre d’eau traitée et effectuer une mesure d’ATP-métrie sur l’échantillon après 2h, puis toutes les 24h pendant 3 à 4 jours. Cette étude permettra d’observer l’évolution de la biomasse dans le temps comme le montre la figure ci-contre.

Attention, en culture, cet effet bactériostatique peut être confondu avec l’effet bactéricide. En effet, il entraîne une augmentation du temps de latence et donc une diminution ou une absence des GT22. 

Dans le cas où le traitement UV n’est pas satisfaisant, plusieurs options sont envisageables : 

  • augmenter la puissance de la lampe UV,
  • diminuer le débit de passage de l’eau, 
  • vérifier l’état des lampes ou l’encrassement des quartz, 
  • évaluer la transmittance de l’eau…

Schématisation de comportements de la biomasse après un traitement UV

Intégrer le risque microbiologique dans les PGSSE

La qualité de l’eau destinée à la consommation humaine (EDCH) est appréhendée au travers d’un ensemble de dispositions réglementaires régie par la Directive européenne « eau potable » 98/83/CE. 
Le projet de révision de cette directive prévoit une évolution vers des PGSSE (Plans de Gestion de la Sécurité Sanitaire des Eaux) obligatoires. Dès 2004, l’OMS a défini le cadre conceptuel des PGSSE. Il s’agit d’une approche globale visant à garantir en permanence la sécurité sanitaire de l’approvisionnement en eau potable.
Pour y parvenir, une stratégie générale de prévention et d’anticipation passant par une évaluation et une gestion préventive des risques doit être mise en place. C’est un changement de culture, avec le développement d’un savoir-faire mettant en avant l’anticipation, la proactivité et l’amélioration continue.

« Une approche anticipative plutôt que curative »

En résumé, le PGSSE doit permettre :

    • D’identifier les dangers et d’évaluer les risques sanitaires des installations de production et distribution d’eau potable ;
    • De déployer des moyens de terrain pour maîtriser ces risques ;
    • D’assurer l’efficacité des mesures en place et de contribuer à la préservation de la santé du consommateur.

Toutes les étapes de la production doivent être vérifiées depuis la ressource en eau, le captage, le traitement et la distribution jusqu’au robinet du consommateur.

Principales étapes d’un PGSSE

L’analyse des risques doit faire apparaître les défauts et dangers. C’est ensuite à l’exploitant de prioriser les actions en utilisant par exemple l’indice de criticité. Pour en savoir plus sur le sujet, consultez cet article.

Pour assurer le suivi des actions correctives et limiter la réapparition du défaut, il est indispensable de disposer d’outils de terrain. L’indicateur microbiologique doit :

    • être simple d’utilisation pour limiter le temps de mobilisation des hommes, 
    • donner un résultat immédiat, 
    • être peu onéreux
    • être représentatif de la biomasse totale (pathogène et non pathogène) .

En effet, les techniques de traitement utilisent des actions de filtration/oxydation qui éliminent toute la biomasse. Disposer d’un indicateur de flore totale est donc pertinent pour contrôler l’efficacité des traitements. Les méthodes culturales nécessitent un temps d’incubation de 18h à 24h a minima. Et cela sans compter les délais d’acheminement des échantillons au laboratoire, leur traitement et l’interprétation des résultats. De plus, ce délai augmente à 48h – 72h si l’échantillon est sous-traité à un laboratoire externe.

Quel outil utiliser pour valider en temps réel vos actions ?

L’ATPmétrie quantitative présente de nombreux avantages. En effet, elle donne en 2 minutes sur le terrain le niveau de charge microbiologique globale d’une eau. L’opérateur peut alors prescrire une action corrective immédiate s’il observe une dérive. Simple, rapide, utilisable par tous et donnant des résultats facilement intégrables, elle est complémentaire des analyses opérées en laboratoire agréé et des capteurs en place. Les résultats obtenus pourront alors alimenter les modèles existants en données qualifiées et fiables.

L’ATP-métrie donne un résultat en picogramme d’ATP pouvant être converti en équivalent bactéries selon une convention. Pour faciliter l’interprétation, nous proposons des seuils de surveillance et de contrôle. Ces limites ont été établies à partir des retours clients et d’une étude comparative effectuée en partenariat avec le CNR-IRSA et SMAT en 2018. 

 

Seuils établis pour la surveillance de l’eau potable :

Une nouvelle app !

Pour rendre l’ATP-métrie plus conviviale et pertinente, GL Biocontrol développe une nouvelle app. Elle combine les résultats d’analyse des paramètres physico-chimiques et microbiologiques pour donner une interprétation globale sur la qualité d’eau. Cette application servira d’aide à la prise de décision. Ce travail s’effectue dans le cadre de l’appel à projet READYNOV soutenu par la Région Occitanie.

Après désinfection ou en sortie de filière

Réseau de distribution d’eau potable

L’indicateur microbiologique permet de : 

  • Vérifier les pratiques et les réalités d’intervention des personnels d’opération (délégataire, fonctionnaire territorial, prestataire externe) ; 
  • Apprécier l’efficacité des bonnes pratiques métiers : purge, réparation sur branchement ou canalisation, désinfection/sanitation, suivi du fonctionnement du réseau d’eau potable via les capteurs/modèles (hypervision, autres dispositifs…) ;  
  • Améliorer la réactivité des personnels d’interventions, en cas de situations d’urgence (contamination accidentelle bactériologique et/ou chimique, suivi des alarmes critiques, …) ;
  • Lever le doute sur une pollution potentielle, une pollution accidentelle, une intrusion réservoir, un prélèvement sur hydrant…
  • Enrichir le panel d’outils et conforter les organisations.

Grâce à cet outil, les exploitants des réseaux (fermage, collectivités et régies) pourront intervenir sur des problématiques très variées :

  • Mise ou remise en service des ouvrages après une désinfection,
  • Mise en service des canalisations neuves ou après travaux,
  • Gestion de crise lors de la contamination du réseau,
  • Contrôle des eaux de rinçage pendant la désinfection (citerne de camion, eau du réseau…)
  • Suivi de non-conformités,
  • Analyse suite à une réclamation client,
  • Le suivi d’un programme « eau sans Chlore »,
  • L’optimisation des purges d’antenne,
  • L’identification d’anomalies suite à un changement climatique (inondation, orages …), 
  • Etc…

Qu’est-ce qui va changer avec la nouvelle Directive européenne Eau Potable ?

L’arrêté du 11 janvier 2007 dépendant de la directive 98/83/CE définissait jusqu’à aujourd’hui la qualité de l’eau utilisée pour la production d’eau destinée à la consommation humaine. La Commission européenne a proposé une évolution de la directive sur l’eau potable qui a été publiée fin 2020.

La révision apporte des modifications sur la nature des paramètres à contrôler et sur leurs valeurs limites. Cet article traite uniquement des paramètres microbiologiques. La nouvelle directive amène également un changement complet de paradigme avec l’introduction des PGSSE (Plans de Gestion de Sécurité Sanitaire de l’Eau).

Paramètres microbiologiques

Les paramètres donnés représentent les minimas imposés par la nouvelle Directive Européenne. Les Etats Membres sont ensuite libres d’ajouter des paramètres ou des limites de qualité plus stringentes.

Références et limites de qualité de l’arrêté du 11 janvier 2007 et de la nouvelle directive 2020/2184

PARAMÈTRES Seuil limite

Arrêté 11 janvier 2007

Seuil limite

Directive 2020/2184

Remarques
Escherichia coli (E. coli) 0 UFC/100 ml 0 UFC/100 ml Limite de qualité
Entérocoques 0 UFC/100 ml 0 UFC/100 ml Limite de qualité
Bactéries coliformes 0 UFC/100 ml 0 UFC/100 ml Référence de qualité
Bactéries sulfito réductrices y compris les spores 0 UFC/100 ml X Référence de qualité
Clostridium perfringens X 0 UFC/100 ml Uniquement si l’analyse des risques le préconise.
Germes aérobies revivifiables à 22°C Variation dans un rapport de 10 par rapport à la valeur habituelle. Pas de changement significatif. Référence de qualité
Germes aérobies revivifiables à 37°C. Variation dans un rapport de 10 par rapport à la valeur habituelle. X Référence de qualité
Coliphages somatiques X < 50 PFU/100 ml Référence de qualité

Dans la ressource. Si dépassement, contrôle de l’eau en sortie de traitement.

Legionella X < 1000 UFC/L Référence de qualité

Seulement dans les réseaux de distribution intérieurs.

 

Paramètres fondamentaux

E. coli et les entérocoques sont considérés comme des paramètres fondamentaux et doivent obligatoirement être contrôlés a minima aux fréquences définies par l’annexe II.B. La fréquence de contrôle dépend essentiellement du volume de production d’eau potable.

Bactéries coliformes 

Les bactéries coliformes sont présentes naturellement dans les sols, la végétation et l’intestin des mammifères. Généralement non pathogènes, ces bactéries sont des indicateurs de contamination fécale. Il n’y a pas de changement sur ce paramètre.

Bactéries sulfito-réductrices et Clostridium perfringens

La recherche de bactéries sulfito-réductrices au sens large est remplacée par la recherche de Clostridium perfringens. Cette bactérie, naturellement présente dans les fèces, est beaucoup plus résistante qu’E. coli. En effet, dans sa forme sporulée, elle survit plus longtemps que les coliformes et peut résister à l’action des agents biocides. Une présence de Clostridium perfringens montre notamment un dysfonctionnement du système de filtration.

Germes totaux à 22°C et 37°C

La référence de qualité concernant le dénombrement des germes aérobies revivifiables à 37°C a été supprimée de la directive. Seule est maintenue la numération des germes totaux à 22°C à 72h. Un regard plus critique de l’évaluation de ce paramètre est demandé car il s’agira maintenant de regarder s’il n’y a pas de changement anormal de ce paramètre au cours du temps.

Coliphages somatiques

La nouvelle directive introduit le suivi des coliphages somatiques comme marqueur de contamination fécale. Jusqu’à présent, aucun paramètre virologique n’était présent. Un rapport de l’ANSES, publié en 2018, décrit notamment les coliphages somatiques comme un excellent indicateur pour évaluer l’efficacité d’un traitement contre les virus. Les coliphages somatiques sont des bactériophages capables d’infecter certaines souches-hôtes d’Escherichia coli, bactérie la plus présente dans la flore intestinale des mammifères.

Son contrôle représente une avancée sanitaire importante pour une distribution et une consommation d’eau de bonne qualité. En effet, l’eau peut être contaminée par des virus entériques humains alors que les indicateurs bactériens actuels sont négatifs. Par ailleurs, il a été démontré que ces virus sont moins sensibles aux traitements de potabilisation.

La recherche des coliphages somatiques sera obligatoire au niveau de la ressource avec une limite fixée à 50 PFU/100 ml. Si cette valeur seuil est dépassée, un contrôle devra être effectué après la filière de traitement pour évaluer son efficacité.

Legionella spp.

Un nouveau paramètre bactériologique fait son apparition : Legionella spp. Cette espèce de bactérie, pourtant très surveillée dans les réseaux d’eau chaude sanitaire n’était jusqu’à maintenant pas recherchée dans l’eau potable. Afin de mieux gérer le risque lié aux légionelles tout en limitant les coûts pour les exploitants d’eau potable, la Commission Européenne a décidé d’instaurer ce paramètre uniquement pour les réseaux de distribution intérieurs.

 

Le PGSSE (Plan de Gestion de Sécurité Sanitaire de l’Eau)

La Directive européenne 2015/1787 avait déjà introduit le principe des PGSSE sans les rendre obligatoires. La nouvelle Directive européenne 2020/2184 « Eau potable » amène une évolution pour les rendre obligatoires à moyen terme.

Il s’agit d’une approche globale visant à garantir en permanence la sécurité sanitaire de l’approvisionnement en eau potable. Pour y parvenir, une stratégie de prévention et d’anticipation des risques doit être mise en place. C’est un changement de paradigme, avec le développement d’un savoir-faire mettant en avant l’anticipation, la proactivité et l’amélioration continue.

Le PGSSE couvre toutes les étapes de l’approvisionnement en eau, du captage jusqu’au robinet du consommateur. Par ailleurs, toutes les unités de production d’eau potable doivent mettre en place ces analyses des risques.

JOURNÉE TECHNIQUE
MISE EN PLACE D’UN PGSSE
Une journée technique gratuite sur la mise en place d’un PGSSE se tiendra le mardi 29 septembre à Montpellier et le mardi 13 octobre à Amiens.
Sabine Lapouge (SAS COPE), experte dans le domaine sécurité sanitaire de l’eau potable, animera cette journée.

S’INSCRIRE

Les 3 phases de la démarche PGSSE

Basée initialement sur les 11 modules de l’OMS, la démarche de mise en place d’un PGSSE repose avant tout sur la constitution d’une équipe pluridisciplinaire dédiée au PGSSE pour sa mise en œuvre. Cette approche peut également être résumée en trois phases, comme présenté dans le webinaire tenu en mai dernier :

La première phase permet d’appréhender le système et de construire une analyse fonctionnelle de l’installation de production et distribution d’eau potable. Cette étape aboutira à la réalisation d’un plan d’échantillonnage et à un premier schéma directeur d’amélioration.

La deuxième phase correspond à la mise en place de l’analyse des dangers pour l’évaluation des risques. Celle-ci mettra en évidence les défauts qui pourraient avoir un impact défavorable sur la qualité de l’EDCH. La gravité du défaut sera évaluée en fonction des résultats des indicateurs mis en place. Pour prioriser les actions, on pourra par exemple utiliser l’indice de criticité défini ci-dessous :

 IC (indice de criticité) = G (gravité) × F (fréquence) x D (détection)

Enfin, la troisième étape consiste à définir les actions correctives à mettre en place ainsi que les indicateurs de suivi. Ces marqueurs microbiologiques permettront de lever les doutes sur une défaillance du réseau, valider l’efficacité et la pertinence des actions correctives et contrôler les opérations de maintenance.

La nécessité des contrôles de terrain

Dans ce contexte, il est nécessaire de disposer d’outils de terrain donnant des résultats rapides. Au niveau microbiologique, les techniques de traitement utilisées sont basées sur des actions de filtration/oxydation qui éliminent toute la biomasse. Disposer d’un indicateur de flore totale (pathogène et non pathogène) est donc pertinent pour contrôler l’efficacité des traitements dans le temps et dans l’espace. L’ATPmétrie quantitative, avec son résultat obtenu en 2 min, présente de nombreux avantages. En effet, elle permet de contrôler sur le terrain le niveau de la charge microbiologique globale d’une eau et de prescrire une action corrective si une dérive est observée. L’utilisation d’un tel indicateur permet de diminuer l’indice de criticité.

Les délais pour mettre en place ces analyses des risques et définir les nouveaux paramètres à suivre sont détaillés dans le tableau suivant. Si l’analyse des risques met en évidence que certains paramètres ne sont pas nécessaires, ils pourront être écartés. Seul le dénombrement des E. coli et des entérocoques doit obligatoirement être réalisé.

Délai de mise en place de la démarche PGSSE après l’entrée en vigueur de la Directive Européenne 2020/2184 et délai de renouvellement.

Délai de mise en place Renouvellement
Ressource 4 ans et demi Tous les 6 ans
Réseau de distribution  6 ans Tous les 6 ans
Réseau de distribution intérieur 6 ans Tous les 6 ans

Webinaire – Gestion microbiologique de l’EDCH : l’ATP-métrie, un indicateur d’aide à la décision

La révision de la directive européenne 98/83/CE relative à la qualité de l’eau destinée à la consommation humaine (EDCH) prévoie de rendre les PGSSE obligatoires.

Les PGSSE (Plans de Gestion de la Sécurité Sanitaire des Eaux) constituent une démarche d’amélioration continue ayant pour but de garantir en permanence une qualité microbiologique optimale. Il s’agit d’une stratégie globale visant à identifier les dangers liés à l’exploitation des systèmes de production et de distribution d’eau. Le but étant de prévenir les risques sanitaires en mettant en œuvre un plan d’actions adapté. Pour suivre les actions menés, il est indispensable de disposer de marqueurs de terrain donnant des résultats immédiats.

Au travers de ce webinaire, nous vous présentons :

  • L’ATP-métrie, outil d’autocontrôle dans un PGSSE,
  • Le principe de l’ATP-métrie DENDRIDIAG®,
  • Les performances de cet outil analytique,
  • Toutes les applications terrain pour le contrôle de l’EDCH,
  • Réponses à vos questions…

Pour aller plus loin, découvrez notre série d’articles concernant l’analyse microbiologique de l’EDCH :

Plan de surveillance, vers l’avenir de la gestion microbiologique de l’eau potable : l’ATP-métrie en première ligne

| Eau potable, PGSSE | No Comments
Le Plan de Gestion de Sécurité Sanitaire de l'Eau (PGSSE) adopte une approche globale pour assurer en permanence la qualité de l'approvisionnement en eau potable. C’est un changement de paradigme…

Détection d’E. coli, pas si simple de s’y retrouver !

| Contrôle microbiologique, Eau potable | No Comments
Pourquoi recherche-t-on E. coli? Escherichia coli (E. coli) est une bactérie intestinale Gram négative qui réside dans le tube digestif de l’Homme et des animaux à sang chaud. Composée de…

Pourquoi, quand et comment rechercher les coliphages somatiques et les bactériophages ARN F-spécifiques ?

| Contrôle microbiologique, Eau potable | No Comments
Indicateurs viraux, paramètres désormais intégrés dans la réglementation La réglementation européenne a introduit le suivi des coliphages pour contrôler la qualité virologique de l’eau potable et de l’eau issue des…

L’ATP-métrie : un indicateur prédictif des non-conformités bactériologiques des eaux

| ATP-métrie, Contrôle microbiologique, Eau potable | No Comments
Les milieux HPC (Heterotrophic Plate Count) tels que le YEA, PCA ou R2A, couramment utilisés pour dénombrer les bactéries environnementales (ex : germes revivifiables à 22°C ou à 36°C), détectent…

Retours de chantier, non conformités… Comment utiliser l’autocontrôle pour les éviter ?

Après une intervention sur le réseau (nettoyage de réservoirs, mise en service de canalisation, gestion de crise…), il est indispensable de contrôler la qualité microbiologique de l’eau. Les analyses réglementaires reposent sur la méthode culturale et ne donnent un résultat définitif que 3 jours plus tard. Souvent, il est difficile d’attendre ce résultat pour remettre en service le réseau. L’incidence d’une non conformité entraîne alors un retour de chantier, un risque sanitaire pour les usagers, une dégradation de l’image, voire des pénalités financières.

Pour limiter au maximum ces problèmes, il est nécessaire de mettre en place un outil d’autocontrôle. De plus, ce dernier est en passe de devenir obligatoire avec l’arrivée des PGSSE. Les techniques de traitement utilisées pour la gestion du réseau d’eau potable sont basées sur des actions de filtration/oxydation qui éliminent toute la biomasse. Disposer d’un indicateur de flore totale (pathogène et non pathogène) est donc pertinent pour contrôler l’efficacité de ces traitements dans le temps et dans l’espace. 

Cet indicateur doit aussi être simple, rapide, utilisable par tous. Il doit donner des résultats facilement intégrables, complémentaires aux analyses conventionnelles opérées en laboratoire agréé et aux capteurs en place (sur sites et/ou réseaux). Aujourd’hui, des autocontrôles par culture existent et présentent une bonne ergonomie mais nécessitent un temps d’incubation d’au minimum 18h, ce qui empêche toute réactivité. 

L’ATPmétrie quantitative présente de nombreux avantages. En effet, elle donne en 2 minutes sur le terrain le niveau de charge microbiologique globale d’une eau. Ainsi, l’opérateur peut prescrire une action corrective immédiate si une dérive est observée.

Cas d’étude d’une maintenance menant à une non conformité

Comparaison avec et sans autocontrôle - Remise en service après intervention
Avec autocontrôle donnant un résultat immédiat

Après l’intervention, l’opérateur effectue une analyse sur le terrain de la qualité microbiologique de l’eau. L’analyse révèle un niveau de biomasse élevé annonçant une probable non conformité des analyses réglementaires. L’opérateur réagit alors immédiatement et réalise une nouvelle procédure de nettoyage et désinfection. L’installation est ainsi sécurisée et les retours de chantier évités. Le second contrôle par ATP-métrie montre que l’installation est sous contrôle microbiologique, il peut attendre les résultats réglementaires de façon sereine.

Sans autocontrôle

L’opérateur réalise le prélèvement bactériologique mais ne peut remettre en service l’installation sans risque. Il obtient le premier résultat au plus tôt 2 jours après l’intervention. Pendant ce lapse de temps, si l’installation a été remise en service, l’eau consommée est potentiellement dangereuse. Lorsque le résultat est non conforme, il faut organiser un retour chantier suivi d’un nouveau cycle d’analyse repoussant encore d’au moins 48h la remise en service sans risque.

« Le PGSSE impose de déployer des moyens de terrain, dont les indicateurs microbiologiques pour maîtriser les risques. »

Des utilisations très variées

L’outil d’autocontrôle se montre pertinent dans de très nombreux cas, comme par exemple : 

  • Remise en service des ouvrages après une désinfection (réservoirs, usine de production…),
  • Mise en service de canalisations neuves ou après travaux,
  • Gestion de crise lors de la contamination du réseau,
  • Contrôle des eaux de rinçage pendant la désinfection (citerne, eau du réseau…),
  • Plaintes clients sur la qualité de l’eau, 
  • Enquête suite à une non conformité, 
  • Arrêts prolongés de la distribution ou production…

Comment réaliser un prélèvement d’EDCH pour une analyse microbiologique ?

Le prélèvement d’eau constitue la première étape pour assurer une analyse bactériologique réussie et fiable. Il conditionne les résultats et l’interprétation qui en sera donnée. L’échantillon doit être représentatif de l’eau du réseau à un instant donné. Pour cela, il est nécessaire de respecter plusieurs étapes clés.

 

La description des étapes ci-dessous s’appuie sur les recommandations COFRAC.

Attention ! Le flambage ne doit être effectué que si le matériau est compatible. Si la désinfection du point de prélèvement n’est pas possible, il est indispensable d’effectuer une purge d’au moins 1 minute avant de réaliser le prélèvement.

 

Quel flacon utiliser ?

Pour réaliser une analyse bactériologique, il est indispensable d’utiliser un flacon de prélèvement stérile. Dans le cas d’un réseau d’eau chloré ou utilisant des agents oxydants pour la désinfection du réseau, on distingue deux cas :

  •       Vous réalisez l’analyse immédiatement après le prélèvement :

Le prélèvement peut être réalisé dans n’importe quel type de flacon stérile. Dans le kit d’ATP-métrie DENDRIDIAG, nous fournissons des pots de prélèvement stériles.

  •       Vous réalisez l’analyse plus d’une heure après le prélèvement :

Si vous réalisez une campagne de prélèvement et analysez les échantillons qu’ultérieurement, le prélèvement doit se faire dans un flacon stérile contenant du thiosulfate de sodium. Ce contenant ne doit jamais être rincé au préalable. Le thiosulfate de sodium neutralise l’action des biocides oxydants, c’est-à-dire qu’il stoppe leur effet désinfectant. Ainsi l’échantillon d’eau reste représentatif du réseau avec sa charge microbiologique au moment du prélèvement. La conservation et le transport de l’échantillon doit être réfrigéré et ne pas dépasser 18h.

Si vous utilisez une désinfection UV, il est conseillé de laisser le prélèvement se stabiliser 2h avant de l’analyser pour voir l’effet optimal.

Si vous souhaitez comparer l’ATP-métrie à d’autres méthodes d’analyses, le prélèvement doit être réalisé dans le même type de flacon et dans les mêmes conditions. Il sera ensuite divisé entre les différentes analyses. Pour en savoir plus à ce sujet, consultez cet article

Pour une remise en service optimale de vos réseaux d’eau chaude sanitaire

Après une période d’arrêt ou de faible utilisation, de nombreuses actions sont à entreprendre pour remettre en service les bâtiments. 
Une organisation méthodique est indispensable pour mener à bien un redémarrage optimal.
Mais quelles sont les bonnes mesures à adopter ?

La DGS, les ARS ainsi que l’INRS préconisent un ensemble de recommandations pour guider les exploitants de réseaux d’eau et accroître leur vigilance vis-à-vis du risque microbiologique. Les opérations préconisées portent principalement sur la prévention du risque légionellose dans les eaux chaudes sanitaires.

Recommandations de la DGS, à réaliser dans les 15 jours avant l’ouverture :

 

  • Remettre le réseau en eau si celui-ci a été vidangé pendant la période d’arrêt ou procéder à une purge complète s’il est resté en eau.

Notre conseil : un circuit en acier galvanisé peut être vidangé mais ne doit pas être maintenu en l’état sous peine de corrosion prématurée. L’exploitant programmera un remplissage immédiat.

  • Monter la consigne de température de production de l’eau chaude sanitaire à 60-70°C, en l’absence d’usager dans l’établissement.

Notre conseil : la corrosion du zinc augmente avec la température. Les conduites en acier galvanisé ne doivent pas être soumises à des températures supérieures à 60°C.

  • Procéder à l’écoulement de l’eau chaude à tous les points d’usages, y compris ceux les plus éloignés de la production, jusqu’à obtention de la température maximale au point d’usage, si possible 70°C.

Notre conseil : validez l’efficacité de la désinfection sur le terrain avec le kit d’ATP-métrie DENDRIDIAG, mesure en 2 min des bactéries.

  • Détartrer et désinfecter les éléments périphériques de la robinetterie (flexibles, pommeaux de douche, mousseurs…).

Notre conseil : n’oubliez pas les éléments de réseau situés en amont ! Organisez les opérations d’entretien en suivant le fil de l’eau : désinfection des adoucisseurs, nettoyage des filtres et autres éléments avant les points terminaux.

  • Ajuster la consigne de température de production de l’eau chaude sanitaire à sa consigne habituelle (elle est comprise entre 55°C et 60°C) et s’assurer que la température relevée au niveau collecteur de retour est supérieure à 50°C.
  • Vérifier l’efficacité de ces mesures par la réalisation d’une campagne de recherche des légionelles selon la stratégie d’échantillonnage mise en œuvre habituellement au titre de l’arrêté du 1er février 2010.

Notre conseil : valider l’efficacité des opérations avec la quantification de Legionella pneumophila par qPCR en 48h pour gagner en sérénité.

  • Poursuivre, jusqu’à ouverture et occupation des locaux, les écoulements réguliers de l’eau chaude au moins toutes les 48 h à tous les points d’usage pendant 5 minutes (ou jusqu’à stabilisation de la température), si possible de façon simultanée, jusqu’à l’occupation complète des locaux.

Notre conseil : utilisez un outil d’autocontrôle microbiologique pour anticiper les dérives pouvant conduire à un résultat positif en Legionella pneumophila.

Bien que principalement recherchées dans l’eau chaude sanitaire, les légionelles sont présentes dans les eaux froides. Lorsque les conditions sont favorables, la bactérie est capable de s’y multiplier de manière exponentielle. Un arrêt du réseau d’eau froide accroît d’autant plus le risque microbiologique. Par conséquent, il est important de tenir compte de l’introduction des légionelles via le réseau d’eau froide (eau d’appoint ou mitigeage). L’exploitant appliquera ainsi les règles d’entretien, de maintenance et de surveillance aussi sur le réseau EFS.

Conscient de l’étendue des actions à mettre en œuvre, GL BIOCONTROL accompagne les exploitants pour faciliter la réouverture et optimiser le redémarrage des installations d’eau chaude sanitaire.

Pour valider l’efficacité de vos opérations de redémarrage… 

L’ATP-métrie quantitative : une analyse des bactéries en moins de 2 minutes et directement sur le terrain.

  • Identifiez les zones de prolifération des bactéries de votre circuit.
  • Adaptez vos opérations suivant les résultats (maintenance conditionnelle).
  • Suivez et validez en temps réel vos actions (désinfection, nettoyage des filtres, purge…).
  • Programmez l’analyse réglementaire dès que la qualité d’eau est satisfaisante.

…et pour gagner en sérénité avant réouverture

La PCR quantitative : pour une analyse fiable de Legionella pneumophila en moins de 48h.

Comment réaliser une comparaison ATP-métrie / culture pertinente ?

L’ATP-métrie et la culture de bactérie sur milieu gélosé sont deux techniques totalement distinctes et donc difficiles à comparer. Alors que la culture mesure seulement les bactéries cultivables, c’est-à-dire celles capables de se multiplier sur un milieu donné, l’ATP-métrie mesure la quantité d’ATP présente dans un échantillon. Cette molécule est produite et présente chez toutes les bactéries vivantes.  Ainsi, l’ATP-métrie mesure l’ensemble des bactéries, qu’elles soient cultivables ou non-cultivables. 

Toutefois, lorsque l’on doit valider une nouvelle technique, il est normal de vouloir la comparer à la méthode utilisée classiquement. Pour éviter d’introduire des biais dans l’analyse des résultats, nous vous donnons quelques conseils à respecter.

Des conseils généraux, non limités à ces deux techniques

 

  • Être conscient de ce que chaque technologie mesure : l’ATP-métrie mesure l’ATP, et donc indirectement les bactéries totales, alors que la culture mesure uniquement les bactéries cultivables.
    .
  • Chaque technologie a ses limites. Pour remonter à la quantité de bactéries dans l’échantillon, l’ATP-métrie utilise une convention définie (1 pg ATP ≈ 1 000 bactéries). La culture quant à elle ne voit pas les VBNC (bactéries viables mais non cultivables). D’après la bibliographie, seules 0,01 à 1% des bactéries cultivent sur les HPC. De plus, la culture bactérienne est limitée par le choix du milieu de culture, la température et le temps d’incubation.
    .
  • Il est nécessaire de travailler sur de larges gammes de concentration, c’est-à-dire sur plusieurs LOG.
    .
  • Les mesures doivent être réalisées au minimum 3 fois pour avoir une valeur significative pour chaque méthode.
    .
  • Les échantillons doivent être traités de la même façon, quel que soit la méthode d’analyse. Une des erreurs les plus courantes que nous rencontrons est de conserver l’échantillon en bouteille de thiosulfate pour les analyses en culture et en pot rouge sans thiosulfate pour les analyses en ATP. Dans le premier cas, l’action des biocides sera bloquée tandis que dans le second, l’agent biocide continuera d’agir, éliminant la biomasse. La comparaison entre les deux méthodes est alors faussée. Il est donc nécessaire de réaliser les différentes analyses sur le même flacon de prélèvement. De même, si une dilution de l’échantillon est nécessaire, elle doit être réalisée dans de l’eau stérile ou dans du sérum physiologique pour les deux méthodes. Pour en savoir plus sur le prélèvement, consultez cet article.
    .
  • Dernier point et pas des moindres, il est nécessaire d’avoir un regard critique sur les résultats. Il faut être capable d’identifier un résultat semblant aberrant pour pouvoir l’écarter ou le confirmer.

Des conseils spécifiques à la comparaison ATP-métrie / Culture HPC

En plus de tous ces conseils, qui ne sont pas limités à la comparaison ATP-métrie / culture, quelques points sont inhérents à ces deux technologies :

  • Les milieux de culture liquides faussent les résultats ATP. En effet, on y retrouve une très grande quantité d’ATP libre et d’inhibiteurs notamment. Pour éviter ces biais, diluez les échantillons dans de l’eau ou rincer la membrane de filtration.
    .
  • Les pré-cultures ne sont pas représentatives de l’échantillon réel. Les bactéries sont préparées pour la culture et une plus grande proportion cultive sur les HPC. Il est important de valider la comparaison sur des échantillons réels à écosystème complexe.
    .
  • Même si l’ATP-métrie a un seuil de sensibilité très bas, elle ne peut pas voir la stérilité.

DES ARTICLES DISPONIBLES EN LIGNE

Plusieurs comparaisons ATP-métrie quantitative / culture ont été publiées ces dernières années :